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1. Introduction

A factorizable S-matrix [1, 2] describing the scattering of world-sheet excitations of the

AdS5 × S5 superstring sigma model [3] has been proposed by Arutyunov, Frolov and Za-

maklar (AFZ) [4]. This S-matrix is closely related to the one found earlier by Beisert [5]

describing the scattering of excitations of the dynamic spin chain corresponding to pla-

nar N = 4 super Yang-Mills. However, the AFZ “string” S-matrix obeys the standard

Yang-Baxter equation, while Beisert’s S-matrix obeys a twisted (dynamical) Yang-Baxter

equation.1 The string S-matrix (up to a phase) follows directly from the assumption that

the excitations are described by a Zamolodchikov-Faddeev (ZF) algebra, and that they

have a centrally extended su(2|2) ⊕ su(2|2) symmetry [5, 6]. It agrees with perturbative

results obtained by direct computations [7].

Hofman and Maldacena (HM) [8] recently considered open strings attached to maximal

giant gravitons [9] in AdS5 × S5. (Related earlier work includes [10 – 12].) They proposed

boundary S-matrices describing the reflection of world-sheet excitations (giant magnons)

for two cases, namely, the Y = 0 and Z = 0 giant graviton branes. However, we have found

that the boundary S-matrix for the latter case does not satisfy the standard boundary

Yang-Baxter equation (BYBE) [13, 14].

1There are in fact three relevant S-matrices: S
string
AFZ , which is in the “string” basis, and satisfies the

standard YBE; Schain
AFZ , which is in the “spin chain” basis, and satisfies a twisted YBE; and SBeisert, which

is related to Schain
AFZ by the final (unnumbered) equation of section 7 in [4].
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The purpose of this note is to construct related boundary S-matrices which do obey

the standard BYBE. To this end, we extend the ZF algebra which was formulated by AFZ

by introducing boundary operators with suitable symmetry properties. We explicitly verify

that the resulting boundary S-matrices are indeed solutions of the standard BYBE.

The outline of this paper is as follows. In section 2 we briefly review the bulk ZF

algebra and the computation of the bulk S-matrix, which in fact is the transpose of the

matrix given in [4]. In section 3 we formulate the boundary ZF algebra, and present

boundary S-matrices for both the Y = 0 and Z = 0 giant graviton branes. In section 4

we derive crossing relations for the boundary S-matrices and solve for the corresponding

scalar factors. We conclude in section 5 with a brief discussion of our results.

2. Bulk ZF algebra and S-matrix

In this section, we briefly review the bulk ZF algebra and the computation of the bulk

S-matrix.2 Following AFZ [4], we denote the ZF operators by A†
i (p), i = 1 , 2 , 3 , 4. These

operators create asymptotic particle states of momentum p when acting on the vacuum

state |0〉. The bulk S-matrix elements Si′j′

i j (p1, p2) are defined by the relation

A†
i (p1)A†

j(p2) = Si′j′

i j (p1, p2)A†
j′(p2)A†

i′(p1) , (2.1)

where summation over repeated indices is always understood. It is convenient to arrange

these matrix elements into a 16 × 16 matrix S as follows,

S = Si′j′

i j ei i′ ⊗ ej j′ , (2.2)

where eij is the usual elementary 4 × 4 matrix whose (i, j) matrix element is 1, and all

others are zero. Although (2.2) is the standard convention, AFZ use a different convention

(see eq. (8.4) in [4]), such that our matrix S is the transpose of theirs.

As is well known [1], starting from A†
i (p1)A†

j(p2)A†
k(p3), one can arrive at linear com-

binations of A†
k′′(p3)A†

j′′(p2)A†
i′′(p1) by applying the relation (2.1) three times, in two

different ways. The consistency condition is the Yang-Baxter equation,

S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2) . (2.3)

We use the standard convention S12 = S ⊗ I, S23 = I ⊗ S, and S13 = P12 S23 P12, where

P12 = P⊗I, P = ei j ⊗ej i is the permutation matrix, and I is the four-dimensional identity

matrix. The ZF algebra (2.1) also implies the bulk unitarity equation

S12(p1, p2)S21(p2, p1) = I , (2.4)

where S21 = P12 S12 P12.

2We consider the S-matrix corresponding to a single copy of the centrally extended su(2|2) algebra; the

full S-matrix is a tensor product of two such S-matrices.

– 2 –



J
H
E
P
0
5
(
2
0
0
8
)
0
5
9

For later reference, we note (as also discussed in [4]) that the conjugate operators
(

A†
i (p)

)†
= Ai(p) obey

Ai(p1)Aj(p2) = S i j
i′j′(p1, p2)Aj′(p2)Ai′(p1) , (2.5)

which together with (2.1) implies the so-called physical unitarity condition S21(p2, p1) =

S†
12(p1, p2), and therefore

S12(p1, p2)S†
12(p1, p2) = I . (2.6)

The centrally extended su(2|2) algebra consists of the rotation generators L b
a , R β

α ,

the supersymmetry generators Q a
α , Q†α

a , and the central elements C ,C† ,H. Latin in-

dices a , b , . . . take values {1 , 2}, while Greek indices α , β , . . . take values {3 , 4}. These

generators have the following nontrivial commutation relations [4, 5, 15]

[

L b
a , Jc

]

= δb
cJa −

1

2
δb
aJc ,

[

R β
α , Jγ

]

= δβ
γ Jα − 1

2
δβ
αJγ ,

[

L b
a , Jc

]

= −δc
aJ

b +
1

2
δb
aJ

c ,
[

R β
α , Jγ

]

= −δγ
αJβ +

1

2
δβ
αJγ ,

{

Q a
α , Q b

β

}

= ǫαβǫabC ,
{

Q†α
a , Q†β

b

}

= ǫαβǫabC
† ,

{

Q a
α , Q†β

b

}

= δa
b R β

α + δβ
αL a

b +
1

2
δa
b δβ

αH , (2.7)

where Ji (J i) denotes any lower (upper) index of a generator, respectively.

The action of the bosonic generators on the ZF operators is given by

L b
a A†

c(p) =

(

δb
cδ

d
a − 1

2
δb
aδ

d
c

)

A†
d(p) + A†

c(p)L b
a , L b

a A†
γ(p) = A†

γ(p)L b
a ,

R β
α A†

γ(p) =

(

δβ
γ δδ

α − 1

2
δβ
αδδ

γ

)

A†
δ(p) + A†

γ(p)R β
α , R β

α A†
c(p) = A†

c(p)R β
α . (2.8)

Moreover, the action of the supersymmetry generators is given by (see eq. (4.21) in [4])

Q a
α A†

b(p) = e−ip/2
[

a(p)δa
b A†

α(p) + A†
b(p)Q a

α

]

,

Q a
α A†

β(p) = e−ip/2
[

b(p)ǫαβǫabA†
b(p) − A†

β(p)Q a
α

]

,

Q†α
a A†

b(p) = eip/2
[

c(p)ǫabǫ
αβA†

β(p) + A†
b(p)Q†α

a

]

,

Q†α
a A†

β(p) = eip/2
[

d(p)δα
β A†

a(p) − A†
β(p)Q†α

a

]

. (2.9)

AFZ work with a different set of relations for the supersymmetry generators which involve

the world-sheet momentum operator (see eq. (4.15) in [4]). However, as we shall see in

section 3.2, the relations (2.9) are more natural when dealing with a boundary.

The one-particle states A†
i (p)|0〉 operators form a representation of the symmetry alge-

bra with C = a b e−ip , C∗ = c d eip , H = ad+bc, provided ad−bc = 1. The representation

– 3 –
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is also unitary provided d = a∗ , c = b∗. Since C = ig(1 − e−ip) [4], the parameters can be

chosen as follows [4, 5]

a =
√

gη , b =
√

g
i

η

(

x+

x−
− 1

)

, c = −√
g

η

x+
, d =

√
g
x+

iη

(

1 − x−

x+

)

, (2.10)

where

x+ +
1

x+
− x− − 1

x−
=

i

g
,

x+

x−
= eip , η =

√

i(x− − x+) . (2.11)

Hence,

H = −ig

(

x+ − 1

x+
− x− +

1

x−

)

. (2.12)

The S-matrix can be determined (up to a phase) by demanding that it commute with

the symmetry generators.3 That is, starting from J A†
i (p1)A†

j(p2)|0〉 where J is a symmetry

generator, and assuming that J annihilates the vacuum state, one can arrive at linear

combinations of A†
j′(p2)A†

i′(p1)|0〉 in two different ways, by applying the ZF relation (2.1)

and the symmetry relations (2.8), (2.9) in different orders. The consistency condition is a

system of linear equations for the S-matrix elements. The result for the nonzero matrix

elements is [4]

Sa a
a a = A , Sα α

α α = D ,

Sa b
a b =

1

2
(A − B) , Sb a

a b =
1

2
(A + B) ,

Sα β
α β =

1

2
(D − E) , Sβ α

α β =
1

2
(D + E) ,

Sα β
a b = −1

2
ǫabǫ

αβ C , Sa b
α β = −1

2
ǫabǫαβ F ,

Sa α
a α = G , Sα a

a α = H , Sa α
α a = K , Sα a

α a = L , (2.13)

where a , b ∈ {1 , 2} with a 6= b; α , β ∈ {3 , 4} with α 6= β; and

A = S0
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2
,

B = −S0

[

x−
2 − x+

1

x+
2 − x−

1

+ 2
(x−

1 − x+
1 )(x−

2 − x+
2 )(x−

2 + x+
1 )

(x−
1 − x+

2 )(x−
1 x−

2 − x+
1 x+

2 )

]

η1η2

η̃1η̃2
,

C = S0
2ix−

1 x−
2 (x+

1 − x+
2 )η1η2

x+
1 x+

2 (x−
1 − x+

2 )(1 − x−
1 x−

2 )
, D = −S0 ,

E = S0

[

1 − 2
(x−

1 − x+
1 )(x−

2 − x+
2 )(x−

1 + x+
2 )

(x−
1 − x+

2 )(x−
1 x−

2 − x+
1 x+

2 )

]

,

F = S0
2i(x−

1 − x+
1 )(x−

2 − x+
2 )(x+

1 − x+
2 )

(x−
1 − x+

2 )(1 − x−
1 x−

2 )η̃1η̃2
,

3The idea of using nonlocal (fractional-spin) integrals of motion to determine bulk S-matrices goes at

least as far back as the works [16, 17]. This approach was extended to boundary S-matrices in [18].
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G = S0
(x−

2 − x−
1 )

(x+
2 − x−

1 )

η1

η̃1
, H = S0

(x+
2 − x−

2 )

(x−
1 − x+

2 )

η1

η̃2
,

K = S0
(x+

1 − x−
1 )

(x−
1 − x+

2 )

η2

η̃1
, L = S0

(x+
1 − x+

2 )

(x−
1 − x+

2 )

η2

η̃2
, (2.14)

where

x±
i =x±(pi) , η1 =η(p1)e

ip2/2 , η2 =η(p2) , η̃1 =η(p1) , η̃2 =η(p2)e
ip1/2 , (2.15)

and η(p) is given in (2.11). This S-matrix satisfies the standard Yang-Baxter equation (2.3).

It also satisfies the unitarity equation (2.4), provided that the scalar factor obey

S0(p1, p2)S0(p2, p1) = 1 . (2.16)

3. Boundary ZF algebra and S-matrix

We consider now the problem of scattering from a boundary. Following HM [8], we consider

the cases of the Y = 0 and Z = 0 giant graviton branes, which we consider in turn.

3.1 Y = 0 giant graviton brane

In order to describe boundary scattering, we extend the bulk ZF algebra (2.1) by introduc-

ing appropriate boundary operators which create the boundary-theory vacuum state |0〉B
from |0〉 [14]. Since there is no boundary degree of freedom for the Y = 0 giant graviton

brane, the corresponding boundary operator is a scalar. For a right boundary, we introduce

a right boundary operator BR, and define the right boundary S-matrix by

A†
i (p)BR = RR i′

i (p)A†
i′(−p)BR . (3.1)

We arrange the S-matrix elements in the usual way into a matrix RR = RR i′
i ei i′ . Starting

from A†
i (p1)A†

j(p2)BR, one can arrive at linear combinations of A†
i′′′(−p1)A†

j′′′(−p2)BR

by applying each of the relations (2.1) and (3.1) two times, in two different ways. The

consistency condition is the right BYBE

S12(p1, p2)RR
1 (p1)S21(p2,−p1)RR

2 (p2) = RR
2 (p2)S12(p1,−p2)RR

1 (p1)S21(−p2,−p1) .(3.2)

The algebra (3.1) also implies the right boundary unitarity equation

RR(p)RR(−p) = I . (3.3)

We also assume, in analogy with the bulk case (2.6), the physical unitarity condition

RR(p)RR(p)† = I . (3.4)

For a left boundary, we introduce a left boundary operator BL, and use the conjugate

ZF operators Ai(p) to define a left boundary S-matrix RL(p),4

BL Ai(p) = RL i
i′ (p)BL Ai′(−p) . (3.6)

4One could try to instead use A
†
i (p) to define a left boundary S-matrix, namely BL A

†
i (p) =

RL i′

i (p)BL A
†

i′(−p), which would instead obey (cf. (3.9))

R
L
1 (p1) S12(−p1, p2)R

L
2 (p2) S21(−p2,−p1) = S12(p1, p2) R

L
2 (p2)S21(−p2, p1) R

L
1 (p1) . (3.5)

However, this left boundary S-matrix would not obey the natural relation (3.8).

– 5 –
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If we identify BL with (BR)†, then (3.1) and (3.6) imply

RL(p) = RR(p)† . (3.7)

Hence, it suffices to consider only the case of right boundary scattering. The unitarity

conditions (3.3), (3.4) then imply the relation

RL(p) = RR(−p) (3.8)

which was proposed by HM. We remark that, starting from BL Ai(p)Aj(p), and with the

help of (2.5), one can derive the left BYBE

RLt1
1 (p1)St1t2

12 (−p1, p2)RL t2
2 (p2)St1t2

21 (−p2,−p1)

= St1t2
12 (p1, p2)RL t2

2 (p2)St1t2
21 (−p2, p1)RL t1

1 (p1) , (3.9)

where ti denotes transposition in the ith space. Taking the transpose in both spaces 1

and 2, interchanging spaces 1 and 2 (i.e., conjugating both sides with the permutation

matrix P12), and relabeling p2 7→ −p1 , p1 7→ −p2, we recover the right BYBE (3.2) with

the identification (3.8).

Following HM, we proceed to determine the boundary S-matrix using the symmetry

of the problem. The Y = 0 giant graviton brane preserves only an su(1|2) subalgebra [8],

which includes (say) the supersymmetry generators Q 1
α and Q†α

1 with α ∈ {3 , 4}. The

right boundary S-matrix is diagonal, with matrix elements

RR 1
1 = r1 , RR 2

2 = r2 , RR 3
3 = RR 4

4 = r . (3.10)

Using first (2.9) and then (3.1), we find

Q 1
3 A†

1(p)BR|0〉 = e−ip/2
[

a(p)A†
3(p) + A†

1(p)Q 1
3

]

BR|0〉

= e−ip/2a(p)rA†
3(−p)BR|0〉 , (3.11)

where we have passed to the second equality using also the assumption that Q 1
3 annihilates

the vacuum state BR|0〉. Reversing the order, i.e., using first (3.1) and then (2.9), we obtain

Q 1
3 A†

1(p)BR|0〉= r1Q
1

3 A†
1(−p)BR|0〉=r1e

ip/2
[

a(−p)A†
3(−p)+A†

1(−p)Q 1
3

]

BR|0〉

= r1e
ip/2a(−p)A†

3(−p)BR|0〉 . (3.12)

Consistency of the results (3.11) and (3.12) requires

r1

r
= e−ip a(p)

a(−p)
= e−ip , (3.13)

where, in passing to the second equality, we have used [8]

x±(−p) = −x∓(p) , η(−p) = η(p) , (3.14)

– 6 –
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since x± 7→ −x∓ corresponds to p 7→ −p , H 7→ H. Similarly, starting from

Q 1
3 A†

4(p)BR|0〉, we readily obtain

r2

r
= eip b(−p)

b(p)
= −1 . (3.15)

The same results are obtained using instead the other conserved supersymmetry generators.

We conclude that the right boundary S-matrix is given by the diagonal matrix5

RR(p) = RR
0 (p) diag(e−ip ,−1 , 1 , 1) . (3.16)

We have explicitly verified that this matrix satisfies the standard BYBE (3.2). It also

evidently satisfies the boundary unitarity equation (3.3), provided that the corresponding

scalar factor satisfies

RR
0 (p)RR

0 (−p) = 1 . (3.17)

If we demand the conservation of the supersymmetry generators Q 2
α , Q†α

2 instead of

Q 1
α , Q†α

1 , then we obtain the same result (3.16) except with the first two elements

permuted.

The matrix (3.16) is similar (but not identical) to the right boundary S-matrix pro-

posed by HM. The latter does not satisfy (3.2), but it does satisfy (3.5). We note that the

left HM boundary S-matrix and our right boundary S-matrix are related by

RL(p)HM = RR(p) U(2p) (3.18)

(up to a permutation of the first two elements), where U(p) is a diagonal matrix relating

the “string” and “chain” bases given by (see eq. (8.8) in [4])

U(p) = diag(eip/2 , eip/2 , 1 , 1) . (3.19)

One can show that the boundary S-matrix (3.16) is essentially (i.e., up to permutations,

etc.) the unique diagonal solution of the BYBE (3.2) with the AFZ bulk S-matrix. In

particular, no free boundary parameters appear in the solution. This is different from

the case of the Hubbard model [19], for which the BYBE has diagonal solutions with a

free parameter [20]. This difference seems paradoxical, given that the AFZ S-matrix is

related [21] to Shastry’s R-matrix. This difference can be attributed to the fact that a

specific parametrization of x±(p) is needed to relate the bulk matrices (see eqs. (12), (14)

and (A.3) in [21]), which is incompatible with the boundary matrices in [20].

3.2 Z = 0 giant graviton brane

According to HM, the Z = 0 giant graviton brane has a boundary degree of freedom and

full su(2|2) symmetry. Correspondingly, we introduce a right boundary operator with an

index Bj R,

A†
i (p)Bj R = RR i′j′

i j (p)A†
i′(−p)Bj′ R , (3.20)

5The left boundary S-matrix (3.6) can be computed in a completely analogous manner using the Her-

mitian conjugate of the relations (2.9) with (Q a
α )† = Q†α

a . The result is an accord with (3.8).

– 7 –
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and we arrange the boundary S-matrix elements into the 16 × 16 matrix RR,

RR = RR i′j′

i j ei i′ ⊗ ej j′ . (3.21)

It satisfies the right BYBE (cf. eq. (3.2))

S12(p1, p2)RR
13(p1)S21(p2,−p1)RR

23(p2)

= RR
23(p2)S12(p1,−p2)RR

13(p1)S21(−p2,−p1) , (3.22)

and the right boundary unitarity equation (3.3), where now I is the 16-dimensional identity

matrix.

Moreover, we introduce the left boundary operator B i
L = (Bi R)†, and define the left

boundary S-matrix by

B i
L Aj(p) = RL i j

i′j′ (p)B i′

L Aj′(−p) . (3.23)

It follows from (3.20) and (3.23) that

RL
12(p) = RR

21(p)t1t2 ∗ ≡ RR
21(p)† . (3.24)

The unitarity conditions (3.3), (3.4) then imply a relation analogous to the one for the

Y = 0 case (3.8),

RL
12(p) = RR

21(−p) . (3.25)

We again use symmetry to compute the boundary S-matrix. We assume that the

symmetry generators act on the right boundary operators as follows

L b
a Bc R =

(

δb
cδ

d
a − 1

2
δb
aδ

d
c

)

Bd R , L b
a Bγ R = 0 ,

R β
α Bγ R =

(

δβ
γ δδ

α − 1

2
δβ
αδδ

γ

)

Bδ R , R β
α Bc R = 0 , (3.26)

and6

Q a
α Bb R = aBδa

b Bα R ,

Q a
α Bβ R = bBǫαβǫabBb R ,

Q†α
a Bb R = cBǫabǫ

αβBβ R ,

Q†α
a Bβ R = dBδα

β Ba R . (3.27)

The boundary operators form a fundamental representation of the symmetry algebra (2.7)

provided

aBdB − bBcB = 1 , (3.28)

6If we had used the commutation relations of the ZF operators with the supersymmetry generators

preferred by AFZ (namely, eq. (4.15) in [4]) instead of (2.9), then operators e±iP/2 would appear on the

r.h.s. of (3.27).
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with

C = aBbB , C∗ = cBdB , H = aBdB + bBcB . (3.29)

We take dB = a∗B , cB = b∗B (unitarity); and we set C = ig, which is consistent with the

requirement |C| = g [8]. A suitable parametrization is

aB =
√

gηB , bB =
√

g
i

ηB
, cB =

√
g
ηB

xB
, dB =

√
g

xB

iηB
, (3.30)

where

ηB =
√

−ixB , xB =
i

2g

(

1 +
√

1 + 4g2
)

. (3.31)

This parametrization coincides with the one used by HM for a particular value of their

parameter fB, namely fB = i. (See eqs. (3.34) - (3.37) in [8].) We emphasize that our

parameters (3.30) are independent of p, in keeping with the fact that momentum is a

property only of the bulk excitations. In contrast, because HM use Beisert’s “non local”

notation (see the second reference in [5]), their values of fB are functions of p which change

under scattering.

The nonzero matrix elements of the right boundary S-matrix are

RR a a
a a = A , RR α α

α α = D ,

RR a b
a b =

1

2
(A + B) , RR b a

a b =
1

2
(A − B) ,

RR α β
α β =

1

2
(D + E) , RR β α

α β =
1

2
(D − E) ,

RR α β
a b =

1

2
ǫabǫ

αβ C , RR a b
α β =

1

2
ǫabǫαβ F ,

RR a α
a α = K , RR α a

a α = L , RR a α
α a = G , RR α a

α a = H , (3.32)

where a , b ∈ {1 , 2} with a 6= b; and α , β ∈ {3 , 4} with α 6= β. Proceeding as before, we

obtain

A = e−2ipAHM = RR
0

x−(x+ + xB)

x+(x− − xB)
,

B = e−2ipBHM = RR
0

2x+x−xB + (x+ − xB)[−2(x+)2 + 2(x−)2 + x+x−]

(x+)2(x− − xB)
,

C = CHM = RR
0

2ηηB

i

(x− + x+)(x−xB − x+xB − x−x+)

xBx−(x+)2(x− − xB)
, D = DHM = RR

0 ,

E = EHM = RR
0

2[(x+)2−(x−)2][−x+x−+xB(x−−x++x−(x+)2]−xB(x+x−)2(xB−x−)

(x−x+)2xB(x−−xB)
,

F = e−2ipFHM = RR
0

2i

ηηB

[(x+)2 − (x−)2](xBx+ − xBx− + x+x−)

(x+)2x−(x− − xB)
,

G = e−ipGHM = RR
0

ηB

η

(x+)2 − (x−)2

x+(x− − xB)
, H = e−ipHHM = RR

0

(x+)2 − xBx−

x+(x− − xB)
,
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K = e−ipKHM = RR
0

(x−)2 + xBx+

x+(x− − xB)
, L = e−ipLHM = RR

0

η

ηB

(x+ + x−)xB

x+(x− − xB)
, (3.33)

where AHM, etc. are the corresponding HM amplitudes for the left boundary S-matrix (see

eq. (3.46) in [8]) with f = i. We have explicitly verified that the right BYBE (3.22) is

satisfied, as well as the boundary unitarity equation (3.3), provided that the scalar factor

obey (3.17).

We note that the left HM boundary S-matrix and our right boundary S-matrix are

related by (cf. eq. (3.18))

RL(p)HM = RR(p) U(2p) ⊗ U(2p) , (3.34)

where U(p) is given by (3.19).

4. Crossing relations and scalar factors

We turn now to the derivation of crossing relations, which (together with the unitarity

relations) help determine the scalar factors of the S-matrices. For the boundary S-matrices,

the crossing relations and scalar factors are similar to (but not the same as) those for the

HM boundary S-matrices.

4.1 Bulk

For the bulk S-matrix, a crossing relation was first proposed by Janik [22] based on a

Hopf algebra structure of the symmetry algebra. AFZ subsequently gave an alternative

derivation of the crossing relation based on the ZF algebra. We now reformulate in terms

of ZF operators yet another derivation of the crossing relation, due to Beisert [5], which is

particularly convenient to generalize to the boundary case [8]. To this end, we define the

“singlet” operator

I(p) = Cij(p)A†
i (p)A†

j(p̄) ≡ c(p) ǫabA†
a(p)A†

b(p̄) + ǫαβA†
α(p)A†

β(p̄) , (4.1)

where (as before) a , b ∈ {1 , 2}, α , β ∈ {3 , 4}, and the function c(p) is yet to be determined.

Hence, C(p) is the 4 × 4 matrix

C(p) =











0 c(p) 0 0

−c(p) 0 0 0

0 0 0 1

0 0 −1 0











. (4.2)

Moreover, p̄ denotes the antiparticle momentum, with [22, 4]

x±(p̄) =
1

x±(p)
, (4.3)

since x± 7→ 1/x± corresponds to p 7→ −p ≡ p̄ , H 7→ −H ≡ H̄. One can readily check

(with the help of eq. (2.8)) that the singlet operator commutes with the bosonic generators.

The function c(p) is determined by the condition that the singlet operator also commute
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with the supersymmetry generators. Indeed, the condition Q 1
3 I(p)|0〉 = I(p)Q 1

3 |0〉 = 0

readily leads (with the help of eq. (2.9)) to

c(p) = eip/2 b(p̄)

a(p)
= −e−ip/2 b(p)

a(p̄)
= −i sign(p) . (4.4)

This computation evidently parallels the one in AFZ for the charge conjugation matrix.

However, the matrix (6.8) in [4] is proportional to our C(−p).7

The crossing relation follows from the requirement that the singlet operator scatter

trivially with a particle. Indeed,

A†
i (p1) I(p2) = Cjk(p2)A†

i (p1)A†
j(p2)A†

k(p̄2)

= Cjk(p2)Si′j′

ij (p1, p2)A†
j′(p2)A†

i′(p1)A†
k(p̄2)

= Cjk(p2)Si′j′

ij (p1, p2)Si′′k′

i′k (p1, p̄2)A†
j′(p2)A†

k′(p̄2)A†
i′′(p1)

≡ I(p2)A†
i (p1) (4.5)

implies the relation

Cjk(p2)Si′j′

ij (p1, p2)Si′′k′

i′k (p1, p̄2) = Cj′k′

(p2) δi′′
i , (4.6)

which can be re-expressed in matrix notation as

St2
12(p1, p2)C2(p2)S12(p1, p̄2)C2(p2)

−1 = I . (4.7)

Substituting the result (2.13), (2.14) for the S-matrix, we obtain a crossing relation for the

bulk scalar factor

S0(p1, p2)S0(p1, p̄2) =
1

f(p1, p2)
, (4.8)

where [22]

f(p1, p2) =

(

1
x+
1

− x−
2

)

(x+
1 − x+

2 )
(

1
x−
1

− x−
2

)

(x−
1 − x+

2 )
. (4.9)

Similarly, by demanding I(p̄1)A†
k(p2) = A†

k(p2) I(p̄1) and using the fact that the matrix

C(p) is antisymmetric, one can also formally obtain

St1
12(p1, p2)C1(p̄1)S12(p̄1, p2)C1(p̄1)

−1 = I , (4.10)

which implies a second crossing relation for the bulk scalar factor [4]

S0(p1, p2)S0(p̄1, p2) =
1

f(p1, p2)
. (4.11)

7In fact, the momentum dependence of the charge conjugation matrix is spurious and can be removed

by properly resolving the branch cut ambiguity as noticed in [23].

– 11 –



J
H
E
P
0
5
(
2
0
0
8
)
0
5
9

The crossing equations (4.8), (4.11) corresponding to the AFZ (string) S-matrix are the

same as Janik’s relations [22] corresponding to Beisert’s (spin chain) S-matrix [5], except

the right-hand-sides are inverted. Correspondingly, the solutions are also inversely related.

In more detail, let us now now consider the full theory, for which there are two su(2|2)
factors. Setting [24, 25]8

S0(p1 , p2)
2 =

x−
1 − x+

2

x+
1 − x−

2

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

σ(p1 , p2)
2 , (4.12)

the crossing equations (4.8), (4.11) imply that the “dressing factor” σ(p1 , p2) obeys

σ(p̄1, p2)σ(p1, p2) =
x−

2

x+
2

1

f(p1, p2)
, σ(p1, p̄2)σ(p1, p2) =

x+
1

x−
1

1

f(p1, p2)
, (4.13)

and the unitarity equation (2.16) implies

σ(p1, p2)σ(p2, p1) = 1 . (4.14)

The relations (4.13), (4.14) are “universal” in the sense that the dressing factor for the spin

chain S-matrix obeys the same relations [26]. A solution is given by [25]–[28]

σ(x±
1 , x±

2 ) =
R(x+

1 , x+
2 ) R(x−

1 , x−
2 )

R(x+
1 , x−

2 ) R(x−
1 , x+

2 )
, R(x1 , x2) = ei[χ(x1 ,x2)−χ(x2 ,x1)] , (4.15)

where [28]

χ(x1 , x2) = −i

∮

|z1|=1

dz1

2π

∮

|z2|=1

dz2

2π

ln Γ
(

1 + ig
(

z1 + 1
z1

− z2 − 1
z2

))

(x1 − z1)(x2 − z2)
. (4.16)

4.2 Boundary: Y = 0 giant graviton brane

For the boundary case, we follow HM and consider the scattering of the singlet opera-

tor (4.1) off the boundary. For the right boundary, we obtain

I(p)BR = Cij(p)A†
i (p)A†

j(p̄)BR

= Cij(p)RR j′

j (p̄)A†
i (p)A†

j′(−p̄)BR

= Cij(p)RR j′

j (p̄)Si′j′′

ij′ (p,−p̄)A†
j′′(−p̄)A†

i′(p)BR

= Cij(p)RR j′

j (p̄)Si′j′′

ij′ (p,−p̄)RR i′′

i′ (p)A†
j′′(−p̄)A†

i′′(−p)BR

≡ I(−p̄)BR , (4.17)

which implies the relation

Cij(p)RR j′

j (p̄)Si′j′′

ij′ (p,−p̄)RR i′′

i′ (p) = Cj′′i′′(p) . (4.18)

8For the spin chain S-matrix, the r.h.s. of (4.12) is inverted [8, 26].
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Substituting the results for the bulk (2.13), (2.14) and boundary (3.16) S-matrices, we

obtain the right boundary crossing relation

RR
0 (p)RR

0 (p̄)S0(p,−p̄) =
1

hb(−p)
= hb(p) , (4.19)

where [8]

hb(p) =
1

x− + x−

1
x+ + x+

. (4.20)

The boundary crossing relation (4.19) is similar to the one found by Ghoshal and Zamolod-

chikov [14] for relativistic integrable theories, and is the same as HM (3.29), except with

p 7→ −p in the r.h.s. .

For the full theory, the crossing relation becomes

RR
0 (p)2 RR

0 (p̄)2 = hb(p)2
1

S0(p,−p̄)2
= hb(p)

1

σ(p,−p̄)2
, (4.21)

where we have used (4.12). Since the r.h.s. is the inverse of HM’s relation (3.31), the

solution is the inverse of the solution found by Chen and Correa (see eq. (27) in [29])

RR
0 (p)2 = RR

0 (p)−2
HM = F (p)σ(p ,−p) , (4.22)

where we have used (4.14), and F (p) is a CDD-type factor obeying

F (p)F (p̄) = 1 , F (p)F (−p) = 1 . (4.23)

4.3 Boundary: Z = 0 giant graviton brane

For the right Z = 0 boundary, a calculation analogous to (4.17) implies the relation

Cij(p)RR j′k′

jk (p̄)Si′j′′

ij′ (p,−p̄)RR i′′k′′

i′k′ (p) = Cj′′i′′(p) δk′′

k . (4.24)

Substituting the results for the bulk (2.13), (2.14) and boundary (3.16) S-matrices, we

obtain the right boundary crossing relation

RR
0 (p)RR

0 (p̄)S0(p,−p̄) =
1

hb(−p)hB(−p)
=

hb(p)

hB(−p)
, (4.25)

where [29, 30]

hB(p) =
x+

x−

(

xB − x−

xB − x+

)

1 + (xBx−x+)2

(1 − (xBx+)2)(1 − x−x+)

=

(

xB − x−

xB − x+

)

(

1
x− + xB

1
x+ + xB

)

. (4.26)

The boundary crossing relation (4.25) is the same as the one found in [29], except with

p 7→ −p in the r.h.s. .
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For the full theory, the crossing relation becomes

RR
0 (p)2 RR

0 (p̄)2 =
hb(p)2

hB(−p)2
1

S0(p,−p̄)2
=

hb(p)

hB(−p)2
1

σ(p,−p̄)2
. (4.27)

Comparing with the corresponding Y = 0 results (4.21), (4.22), we see that

RR
0 (p)2 = F (p)σ(p ,−p) R̃R

0 (p)2 , (4.28)

where

R̃R
0 (p)2 R̃R

0 (p̄)2 =
1

hB(−p)2
, R̃R

0 (p)2 R̃R
0 (−p)2 = 1 . (4.29)

We solve for R̃R
0 (p)2 following [30] using the identities

σ(p ,−xB)2 σ(p̄ ,−xB)2 =
hb(p)2

hB(−p)2
, σ(p ,−xB)2 σ(−p ,−xB)2 = 1 , (4.30)

which we prove in appendix A. We conclude that

R̃R
0 (p)2 =

1

hb(p)
σ(p ,−xB)2 . (4.31)

As noted by HM, the boundary S-matrix for the full theory has a double pole at x− = xB

(see eq. (3.33) above). It can be reduced to a simple pole (corresponding to the second

boundary bound state [8]) by choosing the CDD factor

F (p) =

(

x− − xB
1

x− − xB

)(

1
x+ + xB

x+ + xB

)

, (4.32)

which contains the factor (x−−xB) and satisfies (4.23). Summarizing, the right boundary

scalar factor RR
0 (p)2 is given by (4.28), (4.31) and (4.32).

5. Discussion

We have seen that not only bulk [4] but also boundary S-matrices of string/gauge theory can

satisfy the usual Yang-Baxter equation. The latter are closely related to the boundary S-

matrices which were proposed in [8], as can be seen from eqs. (3.18) and (3.34). Presumably,

as in the bulk case, the differences are due to working in different bases. It should now be

possible to bring the well-developed techniques of the Quantum Inverse Scattering Method

to bear on boundary problems in string/gauge theory. For example, one can now try to

construct the commuting “double-row” transfer matrix [31] and determine its eigenvalues

in terms of roots of corresponding Bethe Ansatz equations. We hope to be able to address

these and related problems in the near future.
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A. Derivation of (4.30)

In order to derive the first identity in (4.30), we first derive the more general result9

σ(y , x(n))
2 σ(ȳ , x(n))

2 =

(

x−
(n)

x+
(n)

)2
h(y , x(n))

2

f(y , x(n))2
, (A.1)

where (cf. (4.9))

f(y , x(n)) =

(

1
y+ − x−

(n)

)(

y+ − x+
(n)

)

(

1
y− − x−

(n)

)(

y− − x+
(n)

) , h(y , x(n)) =

y+ + 1
y+ − x+

(n) − 1
x+
(n)

y− + 1
y− − x−

(n) − 1
x−
(n)

. (A.2)

Moreover, x±
(n) are the parameters corresponding to an n-magnon bound state of momen-

tum p given by [28, 32]

x±
(n) =

e±ip/2

4g sin(p/2)

(

n +

√

n2 + 16g2 sin2(p/2)

)

, (A.3)

which obey the constraint

x+
(n) +

1

x+
(n)

− x−
(n) −

1

x−
(n)

=
in

g
. (A.4)

The n magnons have momenta p1 , p2 , . . . , pn which form a composite (Bethe n-string),

with

x−
j = x+

j−1 , j = 2 , . . . , n , (A.5)

where x±
j ≡ x±(pj). Indeed, since

x+
j +

1

x+
j

− x−
j − 1

x−
j

=
i

g
, j = 1 , . . . , n , (A.6)

summing over j yields the constraint (A.4), where

x+
(n) = x+

n , x−
(n) = x−

1 . (A.7)

With the help of (4.15), (A.5), we obtain

n
∏

j=1

σ(y , xj)=
n
∏

j=1

R(y+ , x+
j )R(y− , x−

j )

R(y+ , x−
j )R(y− , x+

j )
=

R
(

y+ , x+
(n)

)

R
(

y− , x−
(n)

)

R
(

y+ , x−
(n)

)

R
(

y− , x+
(n)

) ≡ σ
(

y , x(n)

)

.(A.8)

The l.h.s. of (A.1) is therefore given by

σ(y , x(n))
2 σ(ȳ , x(n))

2 =
n
∏

j=1

[σ(y , xj)σ(ȳ , xj)]
2 =

n
∏

j=1

[

x−
j

x+
j

1

f(y, xj)

]2

=

(

x−
(n)

x+
(n)

)2 n
∏

j=1

1

f(y, xj)2
, (A.9)

9We denote the momentum dependence of functions by x , x± , p (or y , y± , p, etc.) interchangeably.
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where we have used (4.13), as well as the relation

n
∏

j=1

x−
j

x+
j

=
x−

(n)

x+
(n)

, (A.10)

which follows from (A.5). In order to evaluate the remaining product in (A.9), we make

use of the decomposition [26]

f(y , x)2 =

[

f(y , x)

f(ȳ , x)

]

[f(y , x)f(ȳ , x)] ≡ α(y , x) β(y , x) . (A.11)

Recalling the definition (4.9), we obtain

α(y , x) =
f(y , x)

f(ȳ , x)
=

(

y+ − x+

y+ − x−

)(

y− − x−

y− − x+

)

(

y− − 1
x+

y− − 1
x−

)(

y+ − 1
x−

y+ − 1
x+

)

,

β(y , x) = f(y , x)f(ȳ , x) =
u(y) − u(x) + i

g

u(y) − u(x) − i
g

, (A.12)

where u(x) is defined as [26]

u(x) = x+ +
1

x+
− i

2g
= x− +

1

x−
+

i

2g
. (A.13)

Note that

u(xj) = u(xj−1) +
i

g
. (A.14)

After some algebra, we obtain

n
∏

j=1

α(y , xj) =

(

y+ − x+
(n))

y+ − x−
(n))

)(

y− − x−
(n))

y− − x+
(n))

)





y− − 1
x+
(n)

)

y− − 1
x−
(n)

)









y+ − 1
x−
(n)

)

y+ − 1
x+
(n)

)



 ; (A.15)

and, using (A.14),

n
∏

j=1

β(y , xj) =

(

u(y) − u(x1) + i
g

u(y) − u(xn) − i
g

)

(

u(y) − u(x1)

u(y) − u(xn)

)

=

(

y+ − x−
(n)

y− − x+
(n)

)





1 − 1
y+x−

(n)

1 − 1
y−x+

(n)





1

h(y , x(n))
, (A.16)

where h(y , x(n)) is defined in (A.2). Combining the results (A.11), (A.15), (A.16), we

eventually obtain

n
∏

j=1

f(y, xj)
2 =

n
∏

j=1

α(y , xj)β(y , xj) =
f(y , x(n))

2

h(y , x(n))2
, (A.17)

where f(y , x(n)) is defined in (A.2). Substituting this result into (A.9), we arrive at the

desired result (A.1).
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We are finally in a position to prove the first identity in (4.30). The key point [30]

is that the boundary bound state can be regarded as an n = 2 magnon bound state with

momentum p = π,

±xB = x±
(2)(p = π) , (A.18)

as follows from (A.3) and the expression (3.31) for xB. It follows from (A.1) that

σ(y , xB)2 σ(ȳ , xB)2 =
hb(y)2

f(y , xB)2
, (A.19)

where σ(y , xB) ≡ σ(y , x(2)(p = π)) (see eq. (A.8)). Moreover, recalling (A.2),

f(y , xB) ≡ f(y , x(2)(p = π)) =

(

1
y+ + xB

)

(y+ − xB)
(

1
y− + xB

)

(y− − xB)
, (A.20)

and, since xB + 1/xB = i/g,

h(y , x(2)(p = π)) =
y− + 1

y−

y+ + 1
y+

= hb(y) , (A.21)

where hb is defined in (4.20). Finally, performing in (A.19) the continuation xB 7→ −xB,

we obtain

σ(y ,−xB)2 σ(ȳ ,−xB)2 =
hb(y)2

f(y ,−xB)2
=

hb(p)2

hB(−p)2
. (A.22)

The second equality follows from f(y ,−xB) = hB(−p), where hB(p) is given by (4.26).

The result (A.22) is the first identity in (4.30).

The identity

χ(x1 , x2) = χ(−x2 ,−x1) (A.23)

follows from (4.16) by replacing z1,2 7→ −z1,2 and interchanging z1 ↔ z2. It then follows

from (4.15) that

R(x1 , x2) = R(−x2 ,−x1) . (A.24)

The second (unitarity) relation in (4.30) follows readily from (A.8), (A.18) and the identi-

ties (4.14), (A.24).
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